BUILDING AN ANALYTICS PLATFORM IN AZURE

Gerhard Brueckl

paigo.com

SSAS MAESTRO by Microsoft

@gbrueckl

blog.gbrueckl.at

0 🗹

gerhard@gbrueckl.at

https://github.com/gbrueckl

DatabricksPS

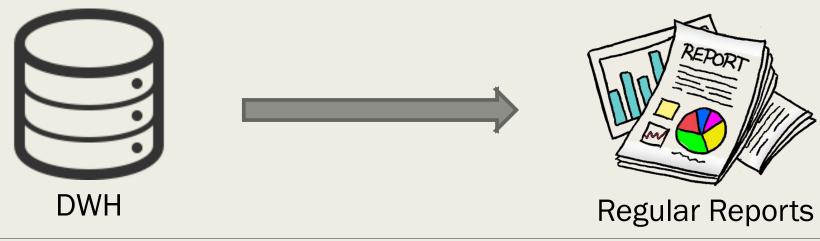
Databricks VSCode

Analytics Platform in Azure

■ What is an Analytics Platform?

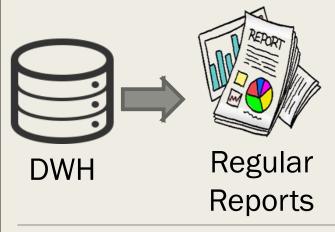
■ Why build it on Azure?

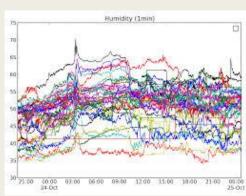
Main Components

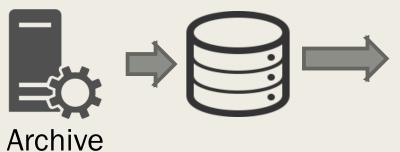

Scenarios

What is an Analytics Platform?

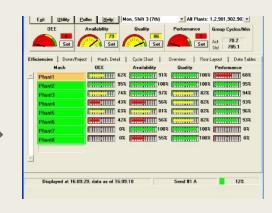
- Data Platform that integrates data from various sources for analytical purposes.
 - *SQL (ERP, CRM, ...)*
 - Big Data (logs, images, ...)
 - Streaming / Real-Time (IoT, ...)
 - ...


- Used by Data Scientists and Data Analysts
- Built by Data Engineers

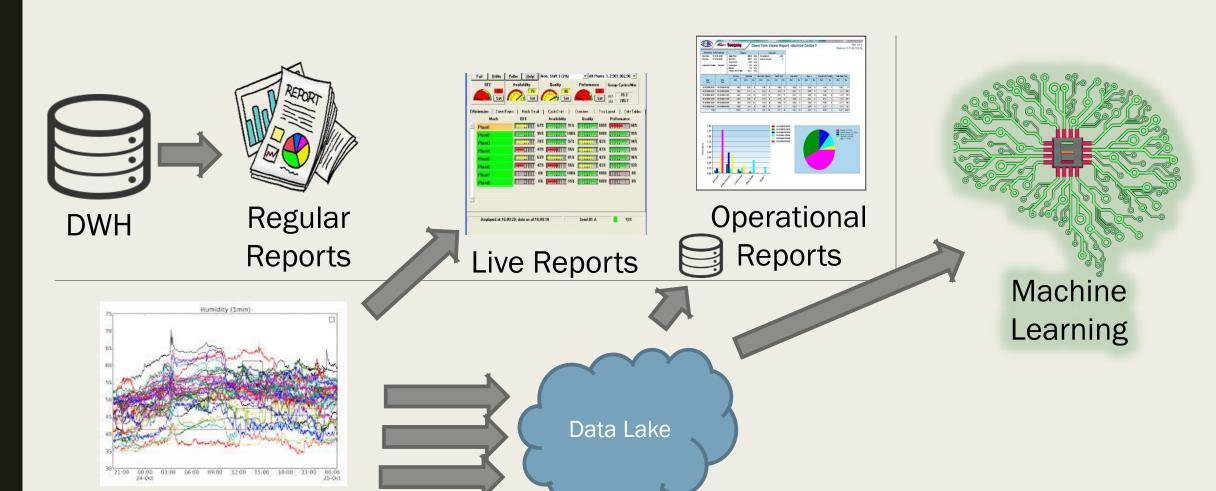

What is an Analytics Platform? History



What is an Analytics Platform? Big Data



Sensor/Log Data


Operational Reports e.g. for Maintenance

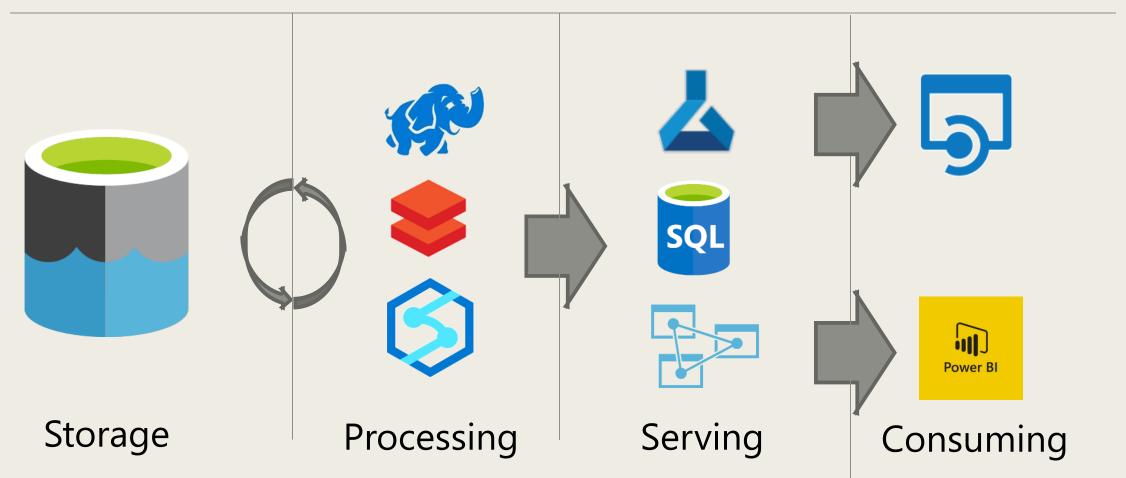
Live Reports

What is an Analytics Platform? Advanced Analytics

Sensor/Log Data

What is an Analytics Platform? Cloud

Need for flexible, cases


Performant infrastructure

Why build it on Azure?

- "Grow at Scale" no "Big Bang"
 - Separation of Storage and Compute !!!
- Could also be any other cloud provider
- BUT Azure has
 - Best PaaS offerings
 - Best User Management
 - Best Overall Integration of Tools/Services

Main Components

Main Components -Storage

- Elastic / Flexible / Scalable
 - Start small grow big
- Manageable
 - Folders
 - Security Concept
- (HDFS support)

Main Components - Processing

- Elastic / Flexible / Scalable
 - On-demand clusters
 - Large Cluster-sizes (100+ nodes)
 - Large Nodes (256GB, 64 cores)
 - Structured & Unstructured data
- Performance
 - Distributed Processing
 - Fast Data Access

Main Components - Processing

- Supported Engines / Languages
 - Spark
 - Python
 - Scala
 - R
 - **■** C#
 - SQL
- Integrated Security
 - Cluster Management
 - Data Access

Main Components -Serving

- Hosting of ML models
- Kubernetes / Docker
- API Service
- Batch processing

Main Components -Serving

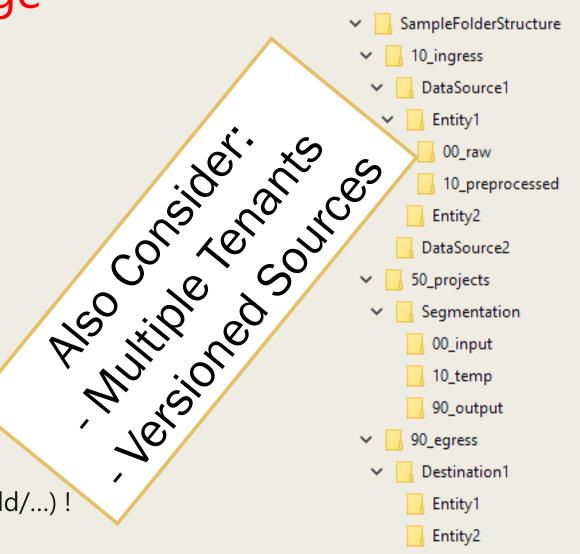
- Query-Interfaces
 - SQL
- OLAP-Interfaces
 - Analysis Services
 - Power BI
- File-Access

Main Components – Data Management

- Orchestration & Scheduling
 - Data Pipelines
 - Connectivity / Extensibility
- Meta Data Store
 - API
 - Connectivity / Extensibility

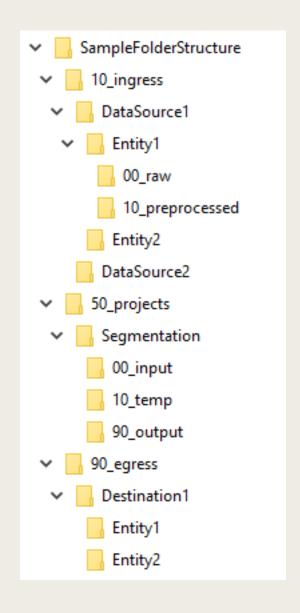
Choose your Storage Service:

- Security
- Folders
 - HDFS



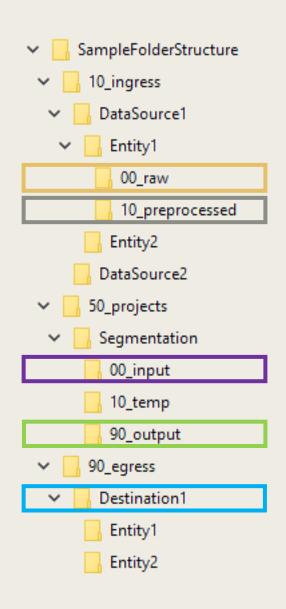
- Redundant
 - Cheap
- Availability (Region)

Structure your Storage!


- Dedicated Areas for
 - Input/raw data
 - Preprocessed/cleaned data
 - Working copies
 - Output data

■ Further partition by time (.../yyyy/MM/dd/...)!

Security (ADLS only)!


- POSIX security no inheritance
- Default permissions
- Use AAD Groups!
- Setup BEFORE loading data!

Clear definition of what is stored where!

Clear definition of transformation steps!

- 00_raw = 1:1 copy of source
- 10_preprocessed = 00_raw in common format no business logics here
- Projects input = filter/sub-select of 10_preprocessed
- Projects output = results after processing Projects input
- Egress = interface for consumers

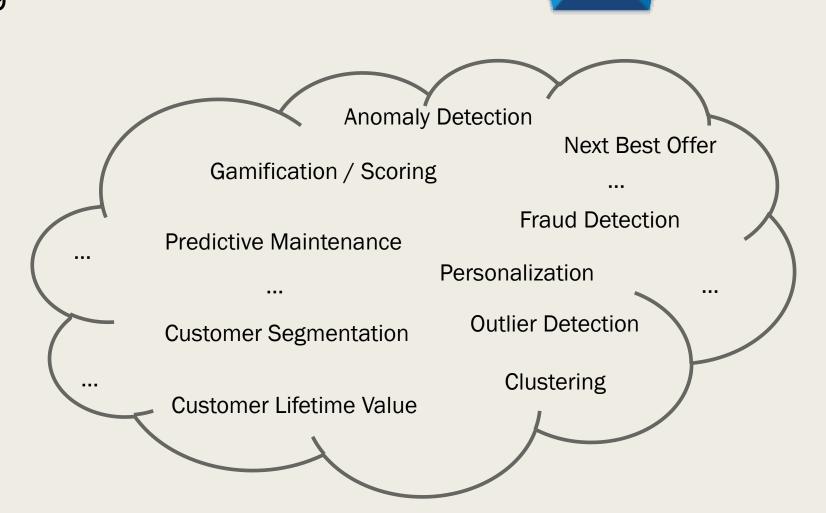
Getting Started - Processing

Depends on the Use-Case!

All processing engines can be started on-demand!

Storage is separated and can be attached at run-time!

Apache Spark is defacto standard


Getting Started - Serving

On-Demand Serving

- API / Microservice
- Streaming

Batch Processing

• scheduled run

Getting Started - Serving

- Azure Synapse not designed for ad-hoc queries
 - Use SQL DB datamarts!

Hive / SparkSQL

- Power BI
- Azure Analysis Services

Getting Started – Data Management

Data Factory

 Manage your data movements

- Built-in Copy feature
- Orchestration of other services

Azure Purview

- Catalogize your data
- Make it searchable

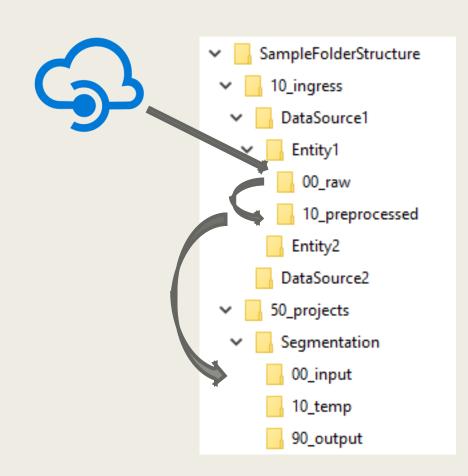
- Apache Atlas API integration
- (Lineage analysis)

Scenarios

- Customer Analytics
 - Customer Profiling / Customer 360°
 - Customer Online Journey

- Advanced Analytics on sensor data from mobile app
 - Telematics, GPS, ...
- Modern DWH for Analytics
- Data Screening

Customer Analytics


Scenario

- Customer Online Journey, Customer 360°
- SEO/SEA, Newsletter, Banner, ...
- Web logs (1000+ columns)
- Various APIs (Google, Exactag, ...)
- Hourly loading

Use AI and ML to better understand and target the customer

Customer Analytics

- Data ingestion viaADF pipelines + Databricks Notebooks
 - REST APIs
 - Web Logs
 - CRM / SQL
 - Web Shop
- Various use-cases
 - Customer Lifetime Value calculation (batch)
 - Segmentation (batch)
 - Next Best Offer (on-demand, web shop)

Advanced Analytics on sensor data from mobile app

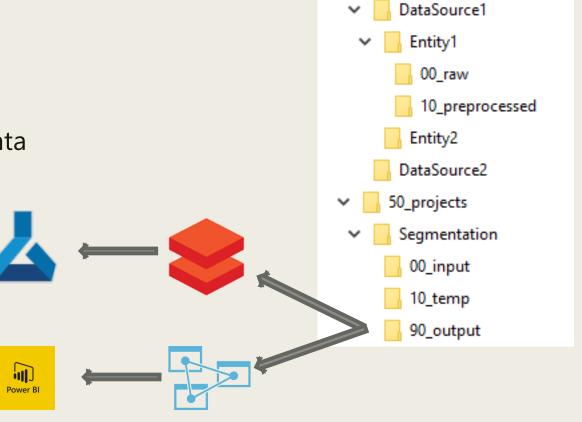
Scenario

- Score driving behavior of users
- Mobile App tracks movements
- Azure IoT infrastructure
- 100k+ devices
- HERE Maps enrichment
- White-labeled solution

Use ML to analyze driving behavior, detect maneuvers, concentration level, ...

Advanced Analytics on sensor data from mobile app

- Interface to IoT platform is EventHub Capture
 - AVRO files with compressed, nested JSON (ZLib + MsgPack)
- Versioned files/messages (schema changes)
- Hourly extraction
- Daily processing
 - HERE Enrichment


Extensive use of Databricks

- Very flexible
- Very scalable

Advanced Analytics on sensor data from mobile app

Separate "Projects" for different Use-Cases

- Analytical SQL model for Data Scientists
- Reporting
- ML model development/training on historic data
- High-Level reporting

SampleFolderStructure

10_ingress

Modern DWH

Scenario

- Online Booking System (24/7)
- 500 GB database
- Multiple Target Systems to load (SQL, API, JSON,
- Load should have little impact on live system
- Only last 18 months in live system
- Rebuild full history any time (>18 months)
- Reporting in Cloud with Azure Analysis Services + PowerBI

Data Lake as DWH Staging Area/Archive

Solution

- Azure Data Factory pipelines
 - Nightly export of data (createdOn/modifiedOn)
 - Copy SQL to ORC files
 - Create SQL Synapse external table for last day <u>dynamically</u>
 - Populate temporary staging tables
- Trigger regular DWH ETL using SSIS in VM

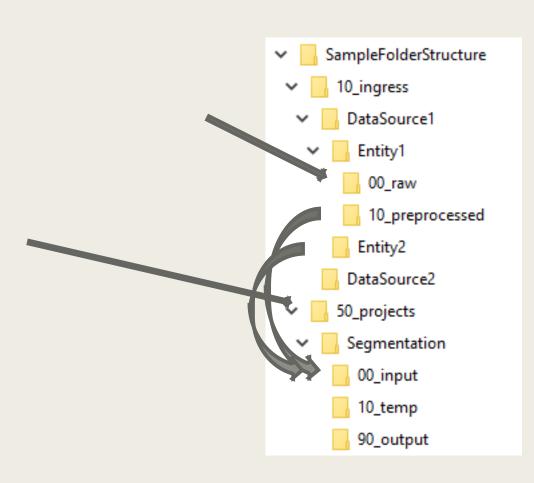
- stage.usp_AddDataLoad
- stage.usp_EnsureStatistics
- stage.usp_LoadAllBookingsInPeriod
- stage.usp_LoadSliceFromArchive
- arc.usp_CreateExternalPartitionedView

- arc.usp_CreateTableByName

Data Screening

Scenario

New data source is discovered


Need to analyze for valuable insights

■ Check possibilities to combine it with existing data

Data Screening

Solution

- Load data into ADLS (one-time load to /ingress)
- Create project
 - Also add data from other sources
- Process data to get a structured format
 - Using existing tools (DataBricks, Synapse, ...)
- (try to) combine with reference data
 - From any other source/project
- Analyze for insights

Take-Aways

- Storage is the key plan it well!
- Can be beneficial for many use-cases (DWH, AA, ...)
 - Favors Advanced Analytics and Machine Learning
- Stick to your design/architecture
 - Go with PaaS Services if possible
 - Keep used technologies at a minimum

File Layout & Formats

- Query oriented vs. ETL oriented
 - Partitioning
 - Compression
 - Number of files
- File Format
 - Delta
 - Parquet
 - JSON

@gbrueckl

blog.gbrueckl.at

gerhard@gbrueckl.at

https://github.com/gbrueckl

DatabricksPS

Databricks VSCode

www.paiqo.com

