
Microsoft Azure
Messaging

Event Hubs

Telemetry
stream

ingestion

Kafka/AMQP

Service Bus &
Azure Queues

Cloud
messaging

Event Grid

Event
distribution

Logic Apps

Workflow
and LOB

Integration

IoT Hub

IoT
messaging

and manage-
ment

Notification
Hubs

Mobile push
notifications

Relay

Discovery,
Firewall/NAT

Traversal

Stream
Analytics

Data
Lake

Storm
Spark

Azure
Functions

Storage
Blobs

Microsoft Azure

Event Driven Apps

Event-Driven Photos

Blob Container
“uploads”

blobCreated

Cloud

News Website Editorial Office (edit/publish) Mobile (out shooting)

Uploads RAW and/or JPG

Blob Container
“sizedImages”

Normalize
format,

auto-classify,
tag, move

Blob Container
“inventory”

read/delete

aircraft, indoors, blue,
white, UK, Cosford,

Canon, 6D

blobCreated

Create
sized

images

photoIngested

read

Index Database
aircraft, indoors, blue, white, UK,

Cosford, Canon, 6D

sizedImageCreated

write

Lightroom

Photoshop

Newsroom
App

Check & add tags

New! Import?

import

edit

photoReindexed

update

update

republish

blobCreated
blobDeleted

Aircraft in
Trouble!!!

Update
published

assets

publishDone

Building Management

Device Management

• Climate
• Energy
• Lighting
• Water
• Gas

• Space Utilization
• Access Control
• Movement Tracking
• Elevator/Escalator
• Refrigeration

• Networking
• Fire/Smoke/Gas
• Biohazards
• Flooding/Wind
• Earthquake

• Power
• Battery
• Temperature
• Vibration
• Component

Health

…

• Firmware
• TPM
• Hypervisor
• OS
• Container
• App

• Config
• Credentials
• Access Control
• Traces
• Logs
• Data

…

Sensor-Event-Driven
Building Management:

Two Perspectives

Room

Unit

Floor

Building

Site

Gas/Biohaz

Climate

Fire/Smoke

Occupancy

Org

/org/contoso/site/berlin/building/41/floor/3/unit/j/room/4/sensors/occupancy

/org/contoso/site/berlin/building/41/floor/3/unit/j/room/4/sensors/fire

/org/contoso/site/berlin/building/41/floor/3/unit/j/room/4/sensors/gasbio

/org/contoso/site/berlin/building/41/floor/3/unit/j/room/4/sensors/climate

/org/contoso/site/berlin/building/41/floor/3/unit/j/room/4

/org/contoso/site/berlin/building/41/floor/3/unit/j

/org/contoso/site/berlin/building/41/floor/3

/org/contoso/site/berlin/building/41

/org/contoso/site/berlin/

/org/contoso/

Building Management

Room

Unit

Floor

Building

Site

Gas/Biohaz

Climate

Fire/Smoke

Occupancy

Org

/org/contoso/site/berlin/building/41/floor/3/unit/j/room/4/sensors/occupancy

/org/contoso/site/berlin/building/41/floor/3/unit/j/room/4/sensors/fire

/org/contoso/site/berlin/building/41/floor/3/unit/j/room/4/sensors/gasbio

/org/contoso/site/berlin/building/41/floor/3/unit/j/room/4/sensors/climate

/org/contoso/site/berlin/building/41/floor/3/unit/j/room/4

/org/contoso/site/berlin/building/41/floor/3/unit/j

/org/contoso/site/berlin/building/41/floor/3

/org/contoso/site/berlin/building/41

/org/contoso/site/berlin/

/org/contoso/

Building Management

Some Analytics Questions:
• Are there people in room 41 3J/4?
• What room is unoccupied in building 41?
• Is there a fire alarm at the site?
• How is the air quality on the lab floor?
• What’s the temp in tenant unit 41 3J?

Some Reactive Actions:
• Signal evacuation and alert the Fire

Department if any fire or gas/biohaz sensor
on site goes into an alert state.

• Adjust floor HVAC when average temp on
any building floor deviates by +/- 2C from
20C.

• Alert Security when unexpected occupancy is
detected in Unit 41 3J.

Room

Unit

Floor

Building

Site

Gas/Biohaz

Climate

Fire/Smoke

Occupancy

Org

/org/contoso/site/berlin/building/41/floor/3/unit/j/room/4/sensors/occupancy

/org/contoso/site/berlin/building/41/floor/3/unit/j/room/4/sensors/fire

/org/contoso/site/berlin/building/41/floor/3/unit/j/room/4/sensors/gasbio

/org/contoso/site/berlin/building/41/floor/3/unit/j/room/4/sensors/climate

/org/contoso/site/berlin/building/41/floor/3/unit/j/room/4

/org/contoso/site/berlin/building/41/floor/3/unit/j

/org/contoso/site/berlin/building/41/floor/3

/org/contoso/site/berlin/building/41

/org/contoso/site/berlin/

/org/contoso/

Building Management“Are there people in room 41 3J/4?”
• SUBSCRIBE /org/contoso/site/berlin/building/41/floor/3/unit/j/room/4/sensors/occupancy
• EVENT

• Topic: /org/contoso/site/berlin/building/41/floor/3/unit/j/room/4/sensors/occupancy
• Data { sensor: xyz, bldg: 41, room: “3J/4“, persons : 0 }

What room is unoccupied in building 41?
• SUBSCRIBE /org/contoso/site/berlin/building/41
• EVENT

• Topic: /org/contoso/site/berlin/building/41
• Filter on subject: /floor/*/unit/*/room/*/sensors/occupancy == 0
• Data { sensor: xyz, bldg: 41, room: “3J/4“, persons : 0 }

Is there a fire alarm at the site?
• SUBSCRIBE /org/contoso/site/berlin
• EVENT

• Topic: /org/contoso/site/berlin
• Filter on subject: /building/*/floor/*/unit/*/room/*/sensors/fire (type== ‘alarm’)

How is the air quality on the lab floor?
• SUBSCRIBE /org/contoso/site/berlin/building/41/floor/1
• EVENT

• Topic: /org/contoso/site/berlin/building/41/floor/1
• Filter on subject: /unit/*/room/*/sensors/climate

What’s the temp in tenant unit 41 3J?
• SUBSCRIBE /org/contoso/site/berlin/building/41/floor/3/unit/j
• EVENT

• Topic: /org/contoso/site/berlin/building/41/floor/3/unit/j
• Filter on: /room/*/sensors/climate

Serverless and
Microservices

(Spoiler: Of course there are servers)
(Spoiler: This isn’t new)

• “Serverless” is PaaS
• The promise of “Platform as a Service”

is to liberate you from managing low-
level infrastructure and focus on apps
and data

• Virtualization is IaaS
• Containers and container orchestrators

are a very flexible way to share,
configure, and reuse portions of
virtualized infrastructure.

• Container platforms may form a
complete virtualization layer, including
software-defined networking.

“Serverless” = Platform as a Service (PaaS)

“Serverless” means
you supply the app

Containers may be
how “you manage”

• Managed Cluster
• You supply applications that are deployed on a cluster that allows for

placement, replication, ownership consensus and management of
stateful resources

• Managed Middleware
• You supply applications that are deployed on sets of independent,

“stateless” middleware servers, like web servers or pure compute hosts
• Applications may be always-on or start on demand; typically maintain

shared cached state and resources
• Managed Functions

• You supply (small groups of) function implementations that are run for
you when triggered by a configured condition.

Degrees of Serverlessness

• … is responsible for holding, processing,
and/or distributing particular kinds of
information within the scope of a system

• … can be built, deployed, and run
independently, meeting defined
operational objectives

• … communicates with consumers and other
services, presenting information using
conventions and/or contract assurances

• … protects itself against unwanted access,
and its information against loss

• … handles failure conditions such that
failures cannot lead to information
corruption

A “Service” is software that …

• Defining property of services is that they’re Autonomous
• A service owns all of the state it immediately depends on and manages
• A service owns its communication contract
• A service can be changed, redeployed, and/or completely replaced
• A service has a well-known set of communication paths

• Services shall have no shared state with others
• Don't depend on or assume any common data store
• Don't depend on any shared in-memory state

• No sideline communications between services
• No opaque side-effects
• All communication is explicit

• Autonomy is about agility and cross-org collaboration

Services: Autonomous Entities

The modern notion of
“Service” is not about code
artifact counts or sizes or

technology choices.

It’s about ownership.

• A service can be made up of a
fleet of independently deployed
functions that jointly operate on
a shared set of resources

• The service interface is made up
from the union of the function
interfaces

• The function interfaces may be a
mix of RPC-style call interfaces
and event driven ones

Microservices and Functions-as-a-Service?

Function

API and
Implementation

• Independently deployable and
versionable

• Independently scalable
• Can have independent

communication paths and
invocation triggers

• Webhook
• Queue
• DB Transaction
• Etc.

Upsides of Functions?

Function

API and
Implementation

• A system is a federation of
services and systems, aiming to
provide a composite solution for
a well-defined scope.

• The solution scope may be
motivated by business,
technology, policy, law, culture,
or other criteria

• A system may appear and act as
a service towards other parties.

• Systems may share services
• Consumers may interact with

multiple systems

System

Eventing and Messaging

• “REST“ is great for interactively
accumulating and acting on
state from multiple sources.

• Let‘s not pretend all clients are
like that – there‘s a lot more

• HTTP and RPC are great to
obtain immediate answers.

• The longer it takes to generate
the answer, the more brittle the
model becomes

Service Communication

Command

Query

Job Handover

Report

Measurement
Notification

Request

Assignment

Update

Transfer

Trace

Command

Query

Job
Handover

Report

Measurement
Notification

Request

Assignment
Update

Transfer

Trace

Intents Facts

Intents Facts

Messaging

Expectations
Conversations

Contracts
Control Transfer
Value Transfer

History
Context
Order

Schema

Eventing

Messaging Eventing

A B

C

A ?

?

Device

Cloud
Gateway

Device
Queues

!

!

!

!

Backend
Process

Azure IoT Hub
Azure Service Bus

<

>

<

>

Messaging – Example: Device Command

Backend
Process

Azure Logic Apps
Azure Service Bus

Workflow
Manager

Step
Handler

Step
Handler

Step
Handler

Step
Handler

Accounting
and Stuff

Messaging – Example: Workflow Execution

Discrete Series

Events

Independent
Report State Change

Actionable

Time Ordered
Context Partitioned

Analyzable
Report Condition

• Report independent, actionable
state changes to authorized
subscribers

• “Blob created”
• “Sales lead created”
• “Order confirmed”

• Allows simple, noninvasive,
reactive extension of the
functionality of a service

Discrete Events are an Extensibility Enabler

Device

Collect Readings

Ingestor

Read Partition

Example: Data Series Processing

🕓🕓

Analyzer

“Pull” flow towards stateful instance

Stateful instances and Actors

Azure Event Hubs

Device

Route Alarm

!

Distributor

Subscrip-
tions

!

!

!

!

!
L
B

Example: Discrete Event Handling –Alarms

Handlers

“Push” flow towards stateless handlers

“Serverless” Functions

Azure Event Grid

• Event Protocol Suite developed in CNCF Serverless WG
• Common metadata attributes for events
• Flexibility to innovate on event semantics
• Simple abstract type system mappable to different encodings

• Transport options
• HTTP(S) 1.1 Webhooks, also HTTP/2 (v0.1)
• MQTT 3.1.1 and 5.0 (draft)
• AMQP 1.0 (draft)

• Encoding options
• JSON (v0.1, required for all implementations)
• Extensible for binary encodings: Avro, MessagePack, AMQP, etc.

CNCF CloudEvents?

First-class support for CloudEvents on Azure Event Grid

• CloudEvents v0.1 support for all
Azure platform events, available in
production

• CloudEvents v0.1 support for Event
Grid custom topics (structured
JSON encoding)

• Docs: https://aka.ms/egcncfdocs
Event Hubs

Resource Groups

Azure Subscriptions

Custom Topics

Blob Storage

Azure Functions

Azure Automation

WebHooks

Logic Apps

Event Hubs

Service Bus

IoT Hub

Storage (GPv2)

CloudEvents Sources

Custom Topics support
CloudEvents input

Natively publish any event
in CloudEvents format

• “Core” functions of services
allow for direct interaction:

• Commands, Requests, etc.
• Extensions react to events

emitted by services based
on core activities.

• Might turn to the emitting
service to ask for details or
perform actions.

Event-Driven: Cores + Extensions

Direct Interaction

Extension by subscription

M
es

sa
gi

ng

Eventing

• Event handlers may need to
be implemented by apps
that reside out of easy
network reach

• Behind NATs
• Inside of Containers w/o

public endpoints
• A: Route via queues
• B: Use a relay

Extend to the Edge? Extend into containers?

NAT?

Container?

Azure Relay HTTP

• Regular Node.js Listener

var http = require('http‘);
var port = process.env.PORT || 1337;

http.createServer(function (req, res) {
res.writeHead(200, {
'Content-Type': 'text/plain'
});
res.end('Hello World\n');

}).listen(port);

• Relayed Node.js Listener
var http = require('hyco-https‘);

http.createRelayedServer(
cxnString, function (req, res){
res.writeHead(200, {

'Content-Type': 'text/plain‘
});
res.end('Hello World\n‘);

}).listen();

http://aka.ms/vxa

• Services: Autonomous software entities grouped around
resource ownership and team ownership scopes

• Platform-as-a-Service: Hosting options for services with tailored
degrees of control for certain scenarios.

• Managed clusters: Complex, stateful, high reliability, always-on.
• Managed servers: Stateless/shared-nothing, on-demand start.
• Managed functions: Event-driven, short-lived

• Messaging and Eventing: Communication backplane for
services, eventing as extensibility enabler.

Summary

Event Hubs

Telemetry
stream

ingestion

Service Bus &
Azure Queues

Cloud
messaging

Event Grid

Event
distribution

Logic Apps

Workflow
and LOB

Integration

IoT Hub

IoT
messaging

and manage-
ment

Notification
Hubs

Mobile push
notifications

Relay

Discovery,
Firewall/NAT

Traversal

Stream
Analytics

Data
Lake

Storm
Spark

Azure
Functions

Storage
Blobs

Microsoft Azure

© 2017 Microsoft Corporation. All rights reserved. The text in this document is available under the Creative Commons Attribution 3.0 License, additional terms may apply. All other content contained in this
document (including, without limitation, trademarks, logos, images, etc.) are not included within the Creative Commons license grant. This document does not provide you with any legal rights to any
intellectual property in any Microsoft product. You may copy and use this document for your internal, reference purposes.
This document is provided "as-is." Information and views expressed in this document, including URL and other Internet Web site references, may change without notice. You bear the risk of using it. Some
examples are for illustration only and are fictitious. No real association is intended or inferred. Microsoft makes no warranties, express or implied, with respect to the information provided here.

	Eventing, Serverless, and�the Extensible Enterprise
	Foliennummer 2
	Event Driven Apps
	Event-Driven Photos
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Serverless and Microservices
	“Serverless” = Platform as a Service (PaaS)
	Degrees of Serverlessness
	A “Service” is software that …
	Services: Autonomous Entities
	The modern notion of “Service” is not about code artifact counts or sizes or technology choices.��It’s about ownership.
	Microservices and Functions-as-a-Service?
	Upsides of Functions?
	System
	Eventing and Messaging
	Service Communication
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Messaging – Example: Device Command
	Messaging – Example: Workflow Execution
	Foliennummer 27
	Discrete Events are an Extensibility Enabler
	Example: Data Series Processing
	Example: Discrete Event Handling –Alarms
	CNCF CloudEvents?
	First-class support for CloudEvents on Azure Event Grid
	Event-Driven: Cores + Extensions
	Extend to the Edge? Extend into containers?
	Azure Relay HTTP
	Summary
	Foliennummer 37
	Foliennummer 38

