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Event Driven Apps
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Building Management

Device Management

• Climate 
• Energy
• Lighting 
• Water
• Gas

• Space Utilization 
• Access Control
• Movement Tracking
• Elevator/Escalator
• Refrigeration

• Networking
• Fire/Smoke/Gas
• Biohazards
• Flooding/Wind
• Earthquake

• Power 
• Battery
• Temperature
• Vibration
• Component 

Health

…

• Firmware 
• TPM
• Hypervisor
• OS
• Container
• App

• Config 
• Credentials
• Access Control
• Traces
• Logs
• Data

…

Sensor-Event-Driven 
Building Management:

Two Perspectives
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Building Management

Some Analytics Questions:
• Are there people in room 41 3J/4?
• What room is unoccupied in building 41?
• Is there a fire alarm at the site?
• How is the air quality on the lab floor?
• What’s the temp in tenant unit 41 3J?

Some Reactive Actions:
• Signal evacuation and alert the Fire 

Department if any fire or gas/biohaz sensor 
on site goes into an alert state.

• Adjust floor HVAC when average temp on 
any building floor deviates by +/- 2C from 
20C.

• Alert Security when unexpected occupancy is 
detected in Unit 41 3J.
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Building Management“Are there people in room 41 3J/4?”
• SUBSCRIBE /org/contoso/site/berlin/building/41/floor/3/unit/j/room/4/sensors/occupancy
• EVENT 

• Topic: /org/contoso/site/berlin/building/41/floor/3/unit/j/room/4/sensors/occupancy
• Data { sensor: xyz, bldg: 41, room: “3J/4“, persons : 0 } 

What room is unoccupied in building 41?
• SUBSCRIBE /org/contoso/site/berlin/building/41
• EVENT 

• Topic: /org/contoso/site/berlin/building/41
• Filter on subject: /floor/*/unit/*/room/*/sensors/occupancy == 0
• Data { sensor: xyz, bldg: 41, room: “3J/4“, persons : 0 } 

Is there a fire alarm at the site?
• SUBSCRIBE /org/contoso/site/berlin
• EVENT 

• Topic: /org/contoso/site/berlin
• Filter on subject: /building/*/floor/*/unit/*/room/*/sensors/fire (type== ‘alarm’)

How is the air quality on the lab floor?
• SUBSCRIBE /org/contoso/site/berlin/building/41/floor/1
• EVENT 

• Topic: /org/contoso/site/berlin/building/41/floor/1
• Filter on subject: /unit/*/room/*/sensors/climate

What’s the temp in tenant unit 41 3J?
• SUBSCRIBE /org/contoso/site/berlin/building/41/floor/3/unit/j
• EVENT 

• Topic: /org/contoso/site/berlin/building/41/floor/3/unit/j
• Filter on: /room/*/sensors/climate



Serverless and 
Microservices

(Spoiler: Of course there are servers)
(Spoiler: This isn’t new)



• “Serverless” is PaaS
• The promise of “Platform as a Service” 

is to liberate you from managing low-
level infrastructure and focus on apps 
and data

• Virtualization is IaaS
• Containers and container orchestrators 

are a very flexible way to share, 
configure, and reuse portions of 
virtualized infrastructure.

• Container platforms may form a 
complete virtualization layer, including 
software-defined networking.

“Serverless” = Platform as a Service (PaaS)

“Serverless” means
you supply the app

Containers may be 
how “you manage”



• Managed Cluster
• You supply applications that are deployed on a cluster that allows for 

placement, replication, ownership consensus and management of 
stateful resources

• Managed Middleware
• You supply applications that are deployed on sets of independent, 

“stateless” middleware servers, like web servers or pure compute hosts
• Applications may be always-on or start on demand; typically maintain 

shared cached state and resources 
• Managed Functions

• You supply (small groups of) function implementations that are run for 
you when triggered by a configured condition. 

Degrees of Serverlessness



• … is responsible for holding, processing, 
and/or distributing particular kinds of 
information within the scope of a system

• … can be built, deployed, and run 
independently, meeting defined 
operational objectives

• … communicates with consumers and other 
services, presenting information using 
conventions and/or contract assurances

• … protects itself against unwanted access, 
and its information against loss

• … handles failure conditions such that 
failures cannot lead to information 
corruption

A “Service” is software that …



• Defining property of services is that they’re Autonomous
• A service owns all of the state it immediately depends on and manages
• A service owns its communication contract
• A service can be changed, redeployed, and/or completely replaced
• A service has a well-known set of communication paths 

• Services shall have no shared state with others
• Don't depend on or assume any common data store
• Don't depend on any shared in-memory state

• No sideline communications between services
• No opaque side-effects
• All communication is explicit

• Autonomy is about agility and cross-org collaboration

Services: Autonomous Entities



The modern notion of 
“Service” is not about code 
artifact counts or sizes or 

technology choices.

It’s about ownership.



• A service can be made up of a 
fleet of independently deployed
functions that jointly operate on 
a shared set of resources 

• The service interface is made up 
from the union of the function 
interfaces

• The function interfaces may be a 
mix of RPC-style call interfaces 
and event driven ones

Microservices and Functions-as-a-Service?

Function

API and 
Implementation



• Independently deployable and 
versionable

• Independently scalable
• Can have independent 

communication paths and 
invocation triggers

• Webhook
• Queue
• DB Transaction
• Etc.

Upsides of Functions?

Function

API and 
Implementation



• A system is a federation of 
services and systems, aiming to 
provide a composite solution for 
a well-defined scope.

• The solution scope may be 
motivated by business, 
technology, policy, law, culture, 
or other criteria

• A system may appear and act as 
a service towards other parties.

• Systems may share services
• Consumers may interact with 

multiple systems

System



Eventing and Messaging



• “REST“ is great for interactively
accumulating and acting on 
state from multiple sources. 

• Let‘s not pretend all clients are
like that – there‘s a lot more

• HTTP and RPC are great to 
obtain immediate answers. 

• The longer it takes to generate
the answer, the more brittle the
model becomes

Service Communication
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Intents Facts



Intents Facts

Messaging

Expectations
Conversations

Contracts
Control Transfer
Value Transfer

History
Context
Order

Schema

Eventing
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Messaging – Example: Device Command



Backend 
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Messaging – Example: Workflow Execution
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• Report independent, actionable 
state changes to authorized 
subscribers

• “Blob created”
• “Sales lead created”
• “Order confirmed”

• Allows simple, noninvasive, 
reactive extension of the 
functionality of a service 

Discrete Events are an Extensibility Enabler
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“Pull” flow towards stateful instance

Stateful instances and Actors

Azure Event Hubs
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“Push” flow towards stateless handlers

“Serverless” Functions

Azure Event Grid



• Event Protocol Suite developed in CNCF Serverless WG
• Common metadata attributes for events
• Flexibility to innovate on event semantics
• Simple abstract type system mappable to different encodings

• Transport options
• HTTP(S) 1.1 Webhooks, also HTTP/2 (v0.1)
• MQTT 3.1.1 and 5.0 (draft)
• AMQP 1.0 (draft)

• Encoding options
• JSON (v0.1, required for all implementations)
• Extensible for binary encodings: Avro, MessagePack, AMQP, etc.

CNCF CloudEvents?



First-class support for CloudEvents on Azure Event Grid

• CloudEvents v0.1 support for all
Azure platform events, available in 
production

• CloudEvents v0.1 support for Event 
Grid custom topics (structured 
JSON encoding)

• Docs: https://aka.ms/egcncfdocs
Event Hubs
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• “Core” functions of services 
allow for direct interaction:

• Commands, Requests, etc. 
• Extensions react to events 

emitted by services based 
on core activities. 

• Might turn to the emitting 
service to ask for details or 
perform actions.

Event-Driven: Cores + Extensions

Direct Interaction

Extension by subscription

M
es

sa
gi

ng

Eventing



• Event handlers may need to 
be implemented by apps 
that reside out of easy 
network reach

• Behind NATs
• Inside of Containers w/o 

public endpoints
• A: Route via queues
• B: Use a relay

Extend to the Edge? Extend into containers?

NAT?

Container?



Azure Relay HTTP

• Regular Node.js Listener

var http = require('http‘); 
var port = process.env.PORT || 1337; 

http.createServer(function (req, res) {
res.writeHead(200, { 
'Content-Type': 'text/plain'     
}); 
res.end('Hello World\n'); 

}).listen(port);

• Relayed Node.js Listener
var http = require('hyco-https‘); 

http.createRelayedServer(
cxnString, function (req, res){
res.writeHead(200, { 

'Content-Type': 'text/plain‘     
});
res.end('Hello World\n‘); 

}).listen();

http://aka.ms/vxa



• Services: Autonomous software entities grouped around 
resource ownership and team ownership scopes

• Platform-as-a-Service: Hosting options for services with tailored 
degrees of control for certain scenarios.

• Managed clusters: Complex, stateful, high reliability, always-on.
• Managed servers: Stateless/shared-nothing, on-demand start.
• Managed functions: Event-driven, short-lived

• Messaging and Eventing: Communication backplane for 
services, eventing as extensibility enabler.

Summary
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