
Microsoft Azure
Messaging

All content in this presentation: CC-BY 3.0

Agenda
• Objective: Understand the messaging standards landscape and why

you have choices

• Messaging Patterns and Protocol Characteristics
• Push/Pull, Queues, Ingestors/Streams, Routers/Distributors

• Messaging Protocol Standards
• MQTT, AMQP, HTTP, Kafka, COAP, gRPC, OPC/TCP, OPC/UADP

• Encoding Standards
• XML, CSV, JSON, CBOR, Avro, Thrift, Protobuf

• Abstraction Standards
• OPC UA, CNCF CloudEvents

What is a Protocol?
• A (network-) protocol defines rules and conventions to allow flow of

information from some party to another party (and back, sometimes)

• Making information flow between parties can get very complicated,
so the job of making that happen is split up into layers that each
focus on specific aspects, such as representing bits as radio waves.

• The layers usually compose such that higher, more abstract concepts
provide a choice of which lower layer to leverage, like Internet
protocol routing over wired connections or radio.

“The nice thing about standards
is that you have so many to
choose from”
Andrew S. Tanenbaum, Computer Networks, 2nd ed., p. 254.

HTTP

Point in Case …

IP, IPSEC, L2TP

TCP UDP ICMP
SCTP

GRPC AMQP CoAP

PowerLAN/Homeplug

Zigbee IEEE 802.15.4

Ethernet IEEE 802.3 + TSNWiFi IEEE 802.11x

GSM/GPRS/HSPA/LTE Weightless

Bluetooth IEEE 802.15.1

ATM

White WiFi 802.11af

Non-IP Routed Networks
(e.g. GSM/UMTS, X.25, Frame

Relay)

App

Net

Link

TLS / DTLS

CloudEvents, AllJoyn, Thread,
Weave,

LWM2M, OPC UA, etc…

QUIC

MQTT

Patterns

Intents Facts

Messaging

Expectations
Conversations

Contracts
Control Transfer
Value Transfer

History
Context
Order

Eventing

Messaging Eventing

A B

C

A ?

?
Often: One message, one receiver Often: One event, 0 to many receivers

Source Target Inter-
mediary

Peer-to-Peer

Push

Source Target

Pull

Brokered

Source Target

Inter-
mediarySource Target

Source Target

Inter-
mediaryR/R Source Target

Inter-
mediarySource Target

1:1
Patterns

Source Target Inter-
mediary

Peer-to-Peer

Push

Source Target

Pull

Brokered

Source Target

Inter-
mediarySource Target

Source Target

Inter-
mediary

Scatter/Gather Source Target

Inter-
mediarySource Target

1:N
Patterns

Target

Target

Target

Target

Target

Target

Target

Inter-
mediarySource

Target

1:N
Distribution

Target

Target
Inter-

mediarySource

Target

Target

Target

?

?

?

Inter-
mediarySource

Target

Target

Target

Broadcast
(everyone)

Multicast
(conditional)

Anycast
(one of the eligible)

Device

Cloud
Gateway

Device
Queues

!

!

!

!

Backend
Process

<

>

<

>

Example: Sending Commands
Command

Reply / Confirmation

Device

Collect Readings

Ingestor

Read Partition

Example: Time Series Processing

🕓🕓

Analyzer

“Pull” flow towards stateful instance

Telemetry / Time Series Events

Device

Route Alarm

!

Distributor

Subscrip-
tions

!

!

!

!

!
L
B

Example: Discrete Event Handling

Handlers

“Push” flow towards stateless handlers
Azure Event Grid

Discrete Events

Client vs. Server

Client ServerConnection Initiation

• A "client" commonly decides which
"server" it wants to talk to and when.

• The client needs to locate the server,
choose a protocol the server provides,
and initiate a connection.

• The client will then typically provide
some form of authentication proof as
part of the connection handshake

• A "server" commonly listens for client-
initiated connections, on one or multiple
network protocol endpoints.

• Once a client attempts to connect, the
server will typically request some
authentication proof that is then validated
for access authorization.

• The server needs to deal with any
malformed or malicious requests

Directionality

Client Server

Simplex

Duplex

• A simplex (or uni-directional) protocol allows flow of data in just one direction.
• A duplex (or bi-directional) protocol allows independent flow of data in both

directions.
• Half-duplex only allows one of the parties to communicate at a time
• Full-duplex allows both parties to communicate concurrently

Symmetry

Client Server

All Gestures

All Gestures

• A protocol is symmetric when is allows all of its supported
gestures (except for connection establishment) independent of
who initiated the connection.

Multiplexing

Client Server
Connection
Session 1
Session 2

• Multiplexing allows a singular network connection to be used for
multiple concurrent communication sessions (or links)

• Establishing connections can be enormously costly, multiplexing
saves the effort for further connections between parties

Layout

Framing, Encoding, Data Layout
Framing

1100110011100101010
10101110001001000100
01010010011110001001
01000100101001010101
00010010100110010100
1001101010100110010
01010101001010001010
10100100101010101010
100101001010101001

A message or framing protocol splits the data stream
into distinct chunks that can be processed in sequence

or separately.
A frame/message header contains information about

the size, content, destination, and often also an
expression of the the sender's intent

Frame
"header"

Frame
"body"

Encoding

The encoding (or media-type) tells a message
processor how to interpret the payload data of the

message.

JSON

XML

Avro Msg
Pack

AMQP CSV

Proto Text Raw

A data layout convention can tell a processor how to
deal with structured data in a dynamic fashion to

distinguish objects or rows/columns

Metadata
Framing

1100110011100101
01010101110001001
00010001010010011
11000100101000100
10100101010100010
01010011001010010
01101010100110010
01010101001010001
01010100100101010
10101010010100101

0101001

A message or framing protocol splits the data stream
into distinct chunks that can be processed in sequence

or separately.
A frame/message header contains information about

the size, content, destination, and often also an
expression of the the sender's intent

Frame
"header"

Frame
"body"

Metadata

Protocol Metadata
Information immediately defined
by and required by the protocol

to function

Payload Metadata
Information describing size,

encoding, and other aspects of
the payload (language)

Application Metadata
App specific instructions sent

alongside the payload for
observation by the receiver

• Not all protocols allow for
payload and application
metadata, requiring externally
agreed conventions establishing
mutual understanding of
message content

Transfer Assurances

• Reliable protocols allow transfer of frames more reliably than underlying protocol layers
• Compensating for data loss, preventing duplication, ensuring order

• Various strategies to compensate for data loss
• Resend on negative acknowledgment („data didn‘t get here“)
• Resend on absence of acknowledgment
• Send duplicates of frames

• Common Transfer Assurances
• "Best Effort" or "At Most Once" – no resend, not reliable
• "At Least Once" – frame is resent until it is understood that is has been delivered at least once
• "Exactly Once" – frame is delivered exactly once [see next]

Unreliable Connection

Reliable Transfer Session

Application Protocols

HTTP 1.1
• HTTP 1.1 is the Application Protocol for the web

• Simple structure, text based, ubiquitious
• Client-initiated (asymmetric) request/response flow
• No multiplexing
• HTTP embodies the principles of "Representational State Transfer".
• REST is not a protocol, it's the architectural foundation for the WWW.

Patterns ReqResp
Symmetric No
Multiplexing No
Encodings Variable
Metadata Yes
Assurances -

POST /search HTTP/1.1
Content-Type: application/json
Content-Length: 21

{ "query" : "hello" }
HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: xxx

{ "result" : "…"}

Web Sockets
• Web Sockets is a Stream Tunneling Protocol

• Allows using the HTTP 1.1 port (practically only HTTPS)
for bi-directional, non-HTTP stream transfer

• Web Sockets by itself is neither a Messaging or an Application Protocol, as it defines
no encoding or semantics for the stream.

• Web Sockets can tunnel AMQP, MQTT, CoAP/TCP, etc.

Patterns Duplex
Symmetric No
Multiplexing No
Encodings Fixed
Metadata No
Assurances -

GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade

HTTP/1.1 101 Switching
Protocols
Upgrade: websocket
Connection: Upgrade

Web
Socket

Handshak
eData Frames

HTTP/2 (+ GRPC)
• HTTP/2 is an Application Protocol; successor of HTTP 1.1

• Same semantics and message model, different implementation
• Multiplexing support, binary standard headers, header compression.
• Uses Web Socket like upgrade for backward compatible integration with HTTP 1.1, no WS support
• Server-push support (server can send unsolicited replies)
• Credit based flow control

Patterns RR, OW/SC
Symmetric No
Multiplexing Yes
Encodings Variable
Metadata Yes
Assurances -

GET /chat HTTP/1.1
Host: server.example.com
Upgrade: h2c
Connection: Upgrade, HTTP2-Settings

HTTP/1.1 101 Switching Protocols
Upgrade: h2c
Connection: Upgrade

HTTP/2

UpgradeHTTP/2 Frames

Stream

Stream

Stream

HTTP/3
• HTTP/3 is an Application Protocol; coexists with HTTP/2

• Same semantics and message model, different implementation
• Largely a redo of HTTP/2, moving to QUIC
• Multiplexing support via QUIC (UDP Streams), binary standard headers, header compression.
• QUIC runs over UDP port 443. TLS built in.

Patterns RR, OW/SC
Symmetric No
Multiplexing Yes
Encodings Variable
Metadata Yes
Assurances -

HTTP/3

QUIC Frames

Stream

Stream

Stream

CoAP
Constrained Application Protocol

• CoAP is a lightweight Application Protocol
• Adapts principles of HTTP to very constrained devices
• CoAP is originally based on UDP, definition of CoAP for TCP exists
• Supports multicast on UDP
• Creates a simple reliability layer over UDP using ACKs

Patterns RR
Symmetric Yes
Multiplexing No
Encodings Variable
Metadata Yes
Assurances -

UDP Route
NON

CON
ACK

GET /res

2.05 Content

OASIS MQTT
• MQTT is a lightweight Publish and Subscribe Protocol

• Easy to implement for publishers and subscribers, assumes broker
• Rigorously optimized for minimizing wire overhead
• Publish/Subscribe gestures are explicit elements of the protocol; “subscribe” = “receive”
• Often used for submitting and subscribing to telemetry and sharing state changes amongst

peers, can model request/reply routes on top
• MQTT 3.1.1 most used
• MQTT 5.0 new with many improvements

Patterns Oneway
Symmetric No
Multiplexing No
Encodings Variable (5.0)
Metadata Yes (5.0)
Assurances AMO, ALO,

EO

MQTT Broker

Topics

PUBLISH /a SUBSCRIBE /a

PUBLISH /aPUBLISH /b

OASIS AMQP
Advanced Message Queuing Protocol

• AMQP 1.0 is a symmetric, reliable Message Transfer Protocol
with support for multiplexing and flow control

• Supports queuing, pub/sub, filters, one-way, request-response, streams
• No topology assumptions, multi-hop routing facilities

• AMQP 0.9 is an expired draft with a fixed topology model (

Patterns Any
Symmetric Yes
Multiplexing Yes
Encodings Variable
Metadata Yes
Assurances AMO, ALO,

EO

Link
Credit

Apache Kafka
• The Apache Kafka protocol is a project-specific

request/response protocol for the Apache Kafka broker
• SASL preamble for authentication
• API keys identify operations, specific message types per key
• Effectively an RPC protocol tailored to Kafka’s features

Patterns Kafka
Symmetric No
Multiplexing No
Encodings Variable
Metadata Yes
Assurances ALO

produce fetch

UDP
Multicast

OMG DDS
Data Distribution System

• OMG (Object Management Group) Standard describing a distributed, multi-
master cache replication infrastructure

• Built on top of RTPS which builds on UDP multicast

A B C D E F G

Writer Writer Writer Writer Writer Writer Writer

Reader Reader Reader

B' E' G'

OPC/TCP
• OPC/TCP is a symmetric message transfer protocol

• Compact data encoding w/ external schema
• Created specifically for OPC UA (more later)
• Inline, non-TLS security model w/ optional message-level encryption

Patterns Any
Symmetric Yes
Multiplexing No
Encodings Variable
Metadata Yes
Assurances AMO, ALO,

EO

Unifying Abstractions

Address Space

OPC UA
OPC Foundation Unified Architecture

• OPC Foundation standard; IEC standard
• Foundational architecture model for (industrial) device management

and information flow
• Cloud integration via Pub/Sub

Server Client
Discover
Observe
Query

Control

Device
OPC UA Server

Address Space “Message
Writer”

Published
Items

Event
Event

Data (Query)
Data (Query)

Encoding
Msg

Security
Transport

Perimeter Boundary

Operator SystemPlant Integrator
System

Machine B
Manufacturer

System

Machine A
Manufacturer

System

Component
Manufacturer

System

Event is written
out here

Capabilities

Hard Real
Time Bus.
Not IP.

Information is
captured here.

Federation

OPC UA

DIN 92222

CNCF CloudEvents
• Event Protocol Suite developed in CNCF Serverless WG

• Common metadata attributes for events
• Flexibility to innovate on event semantics
• Simple abstract type system mappable to different encodings

• Transport options
• HTTP(S) 1.1 Webhooks, also HTTP/2
• MQTT 3.1.1 and 5.0
• AMQP 1.0

• Encoding options
• JSON (required for all implementations)
• Extensible for binary encodings: Avro, AMQP, etc.

CloudEvents – Base Specification
• CloudEvents is a lightweight common convention for events.
• It’s intentionally not a messaging model to keep complexity low.

• No reply-path indicators, no message-to-message correlation, no target
address indicators, no command verbs/methods.

• Metadata for handling of events by generic middleware and/or
dispatchers

• What kind of event is it? type
• When was it sent? time
• What context was it sent out of? source
• What is this event’s unique identifier? id
• What’s the shape of the carried event data? datacontenttype, schema

• Event data may be text-based (esp. JSON) or binary

CloudEvents – Event Formats
• Event formats bind the abstract

CloudEvents information model to
specific wire encodings.

• All implementation must support JSON.
Avro is a supported binary format.

• AMQP type system encoding defined
for metadata mapping to AMQP
properties and annotations

• Further compact binary event format
candidates might be CBOR, or
Protobuf.

{
"specversion" : "0.1",
"type" : "myevent",
"source" : "uri:example-com:mydevice",
"id" : "A234-1234-1234",
"time" : "2018-04-05T17:31:00Z",
"datacontenttype" : "text/plain",
"data" : "Hello"

}

JSON Representation

CloudEvents – Transport Bindings
• HTTP 1.1, HTTP/2, HTTP/3:

• Binds to the HTTP message
• Binary and structured modes

• AMQP:
• Binds event to the AMQP message
• Binary and structured modes

• MQTT:
• Binds event to MQTT PUBLISH frame.
• Binary and Structured for MQTT v5
• Structured mode only for MQTT v3.1.1

• NATS:
• Binds event to the NATS message.
• Structured mode only

• Apache Kafka:
• Binds to the Kafka message
• Structured and binary mode

Protocol bindings directly map onto the protocol‘s
message structure and using protocol semantics.

Accepts that protocols are different.

Binary mode: Event metadata projected onto the
protocol message metadata, event data onto the

protocol message payload

Structured mode: Event is self-contained as an
encoded byte stream, metadata may be promoted

(duplicated) into protocol message metadata.

Event Hubs

Telemetry
stream

ingestion

Service Bus &
Azure Queues

Cloud
messaging

Event Grid

Event
distribution

IoT Hub

IoT
messaging

and manage-
ment

Relay

Discovery,
Firewall/NAT

Traversal

Microsoft Azure

© 2019 Microsoft Corporation. All rights reserved. The text in this document is available under the Creative Commons Attribution 3.0 License, additional terms may apply. All other content contained in this
document (including, without limitation, trademarks, logos, images, etc.) are not included within the Creative Commons license grant. This document does not provide you with any legal rights to any
intellectual property in any Microsoft product. You may copy and use this document for your internal, reference purposes.
This document is provided "as-is." Information and views expressed in this document, including URL and other Internet Web site references, may change without notice. You bear the risk of using it. Some
examples are for illustration only and are fictitious. No real association is intended or inferred. Microsoft makes no warranties, express or implied, with respect to the information provided here.

	Azure Messaging�Standards Matter!
	Agenda
	What is a Protocol?
	“The nice thing about standards is that you have so many to choose from”
	Point in Case …
	Patterns
	Foliennummer 7
	Foliennummer 8
	1:1�Patterns
	1:N�Patterns
	1:N�Distribution
	Example: Sending Commands
	Example: Time Series Processing
	Example: Discrete Event Handling
	Client vs. Server
	Directionality
	Symmetry
	Multiplexing
	Framing, Encoding, Data Layout
	Metadata
	Transfer Assurances
	Application Protocols
	HTTP 1.1
	Web Sockets
	HTTP/2 (+ GRPC)
	HTTP/3
	CoAP�Constrained Application Protocol
	OASIS MQTT
	OASIS AMQP�Advanced Message Queuing Protocol
	Apache Kafka
	OMG DDS�Data Distribution System
	OPC/TCP
	Unifying Abstractions
	OPC UA�OPC Foundation Unified Architecture
	Foliennummer 35
	CNCF CloudEvents
	CloudEvents – Base Specification
	CloudEvents – Event Formats
	CloudEvents – Transport Bindings
	Foliennummer 40
	Foliennummer 41

