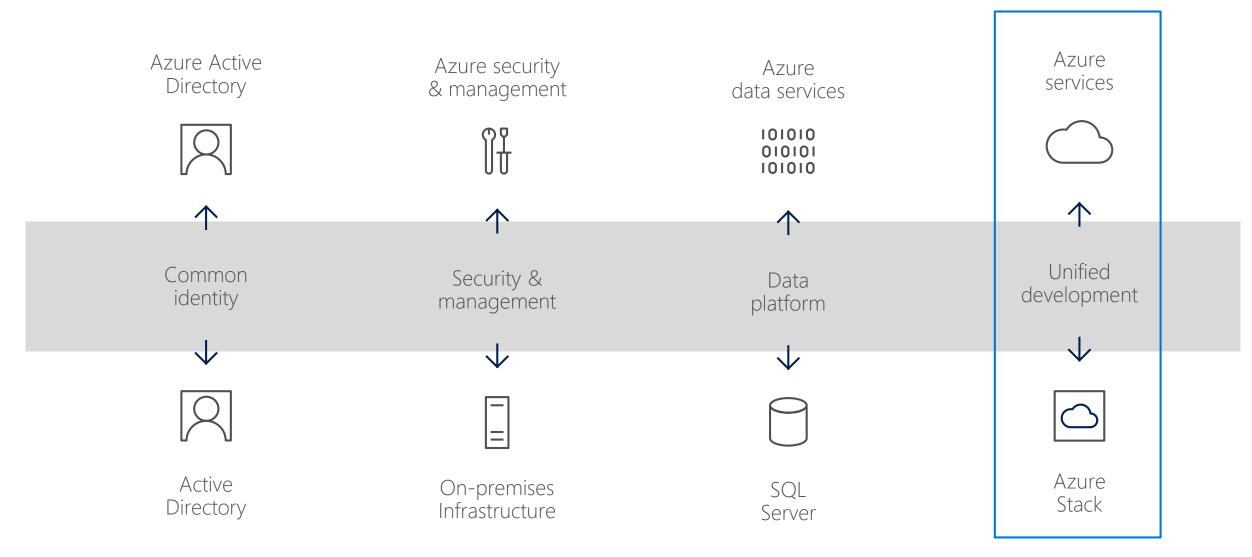
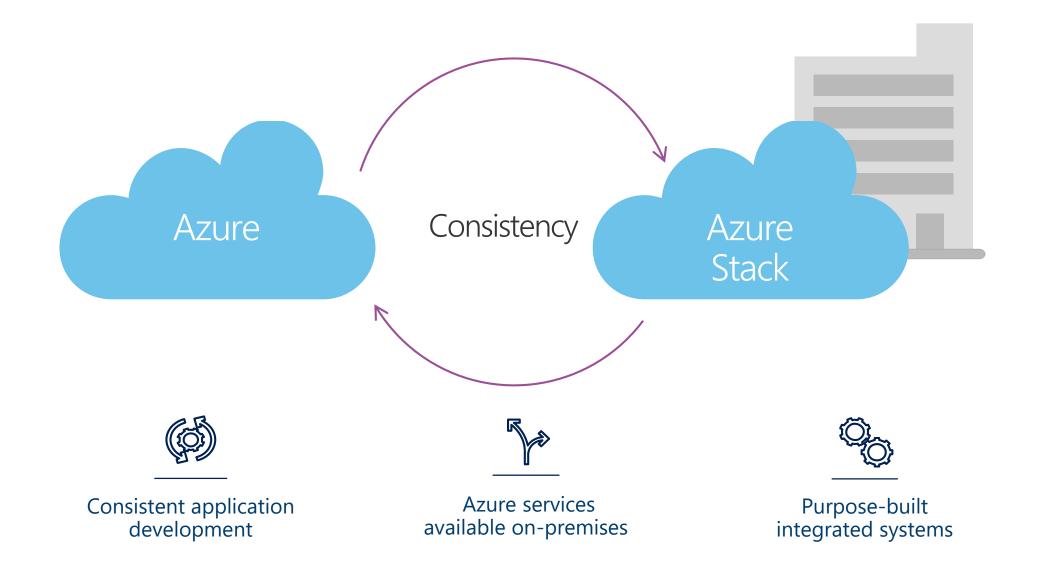


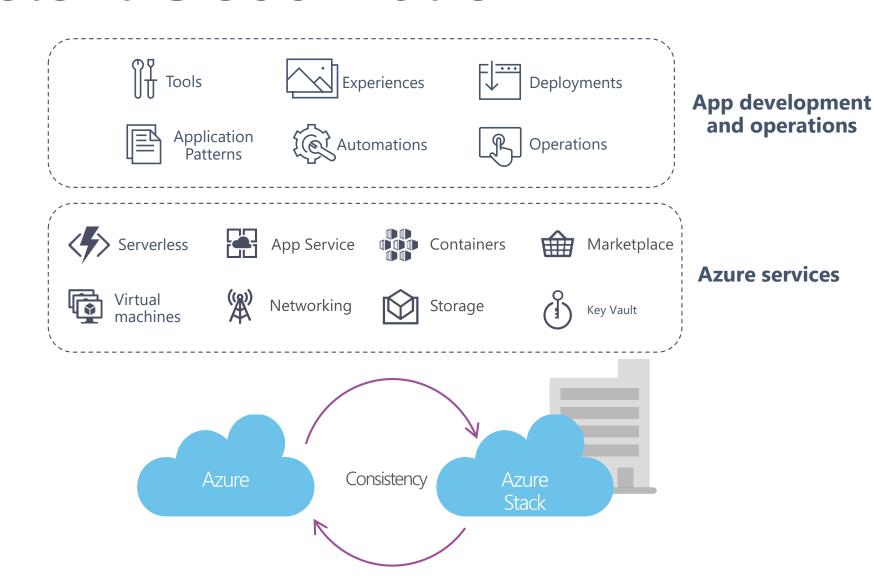
Agenda

- Azure Stack Overview
- AKS on Azure Stack
- Service Fabric on Azure Stack
- Hybrid Scenarios




- Microsoft TSP Azure (hybrid) Infra
- Fromer MVP Cloud & Datacenter Management
- 20 yrs. Experience as Architect & Senior Consultant
- Microsoft Champ: Azure Stack, Connectivity & CDN
- IT Community Freak
- Book Editor (Azure Stack, Azure & MultiCloud)
- <u>www.DrAzureStack.com</u>

Azure Stack


Consistent hybrid environment

Azure Stack: an extension of Azure

Consistent Cloud Platform

Azure and Azure Stack

Truly consistent hybrid cloud platform

Portal | PowerShell | DevOps tools

Azure Resource Manager

Azure IaaS | Azure PaaS
Compute | Network | Storage | App Service | Service Fabric*

Cloud-inspired infrastructure

Microsoft Azure Stack
Private | Hosted

Sealed hosts Integrated Systems Hardware

Portal | PowerShell | DevOps tools

Azure Resource Manager

IaaS | PaaS

Cloud infrastructure

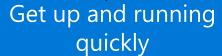
Microsoft Azure
Public

Sealed hosts Azure-designed Hardware

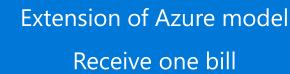
Integrated delivery experience

Integrated systems

Hewlett Packard
Enterprise


Lenovo

cisco.


Fast to deploy

Deliver 100s of VMs initially (and grow over time)

Pay-as-you-use

Option: Capacity Model

Integrated support, broadly available

Consistent support experience, no matter who you call

Available in 92 geos

Roadmap: Fujitsu integrated systems will be available in CY19.

Azure Services on Azure Stack: PaaS and laaS

Web, and API apps	Serverless computing	Microservices platform	Container orchestration	Pivotal and Open source
Azure App Service	Azure Functions	Service Fabric	Kubernetes	Cloud Foundry OpenShift
Virtual Machines		(A) Networking	Storage	(I) Key Vault

Azure managed Kubernetes

AKS: Simplify the deployment, management, and operations of Kubernetes

Deploy and manage Kubernetes with ease

Accelerate containerized application development

Set up CI/CD in a few clicks

Secure your Kubernetes environment

Scale and run applications with confidence

Work how you want with open-source tools & APIs

... in Azure ...

Azure Kubernetes Service (AKS)

Kubernetes made easy – get the most complete and simple end-to-end experience for seamless Kubernetes lifecycle management on Azure

Deploy and manage Kubernetes with ease

- Free managed control plane for auto upgrades, patching and self healing
- Provision with portal, CLI, ARM, or Terraform
- Full visibility with integrated monitoring and logging

Scale and run applications with confidence

- Built-in auto scaling
- Global data center to boost performance and reach
- Elastically burst from AKS cluster using ACI

Secure your Kubernetes environment

- Control access through AAD and RBAC
- Safeguard keys and secrets with Key Vault
- Secure network communication with VNET and CNI

Accelerate containerized application development

- Define, install and upgrade apps easily with Helm
- Automatically scaffold, containerize and deploy with CLI or Visual Studio
- Rapidly iterate, test and debug microservices using Dev Spaces

Work how you want with open-source tools & APIs

- 100% open source Kubernetes
- Take full advantage of services and tools in the ecosystem
- Easily integrate with SLAbacked Azure services with OSBA

Set up CI/CD in a few clicks

- Three steps away from a CI/CD pipeline with DevOps Project
- Work with existing tools such as Jenkins
- Geo-replicated container registry

Azure makes Kubernetes easy

Deploy and manage Kubernetes with ease

Task	← The Old Way	→ With Azure
Create a cluster	Provision network and VMs Install dozens of system components including etcd Create and install certificates Register agent nodes with control plane	az aks create
Upgrade a cluster	Upgrade your master nodes Cordon/drain and upgrade worker nodes individually	az aks upgrade
Scale a cluster	Provision new VMs Install system components Register nodes with API server	az aks scale

Azure makes Kubernetes easy

Accelerate containerized application development

Task	← The Old Way	→ With Azure
Build a containerized app and deploy to Kubernetes	Build the app Write a Dockerfile Build the container image Push the container to a registry Write Kubernetes manifests/Helm chart Deploy to Kubernetes	<pre>draft init to configure your environment draft create to auto-create Dockerfile/Helm chart draft up to deploy to Kubernetes</pre>
Build a containerized app and deploy to Kubernetes	Set up a local dev environment using Minikube Determine the transitive closure of your dependencies Identify behavior of dependencies for key test cases Stub out dependent services with expected behavior Make local changes, check-in, and hope things work Validate with application logs	Use DevSpaces Do breakpoint debugging in your IDE
Expose web apps to the internet with a DNS entry	Deploy an ingress controller Create a load-balanced IP for it Add an ingress resource to your deployment Acquire a custom domain Create a DNS A-record for your service	Turn HTTP application routing on in your cluster Add an ingress resource to your deployment

Azure makes Kubernetes easy

Set up CI/CD in a few clicks

Task	← The Old Way	→ With Azure
Set up a CI/CD pipeline and deploy to Kubernetes	Create git repo Create a build pipeline Create a container registry Create a Kubernetes cluster Configure build pipeline to push to container registry Configure build pipeline to deploy to Kubernetes	Create an Azure DevOps project with AKS as a target
Make container images available for deployment worldwide	Create a container registry in every region Configure build pipeline with multiple endpoints Loop through all regions and push following build	Create an Azure Container Registry with geo-replication Push your image to a single endpoint
Track health with consolidated cluster and application logs	Choose a logging solution Deploy log stack in your cluster or provision a service Configure and deploy a logging agent onto all nodes	Checkbox "container monitoring" in the Azure portal

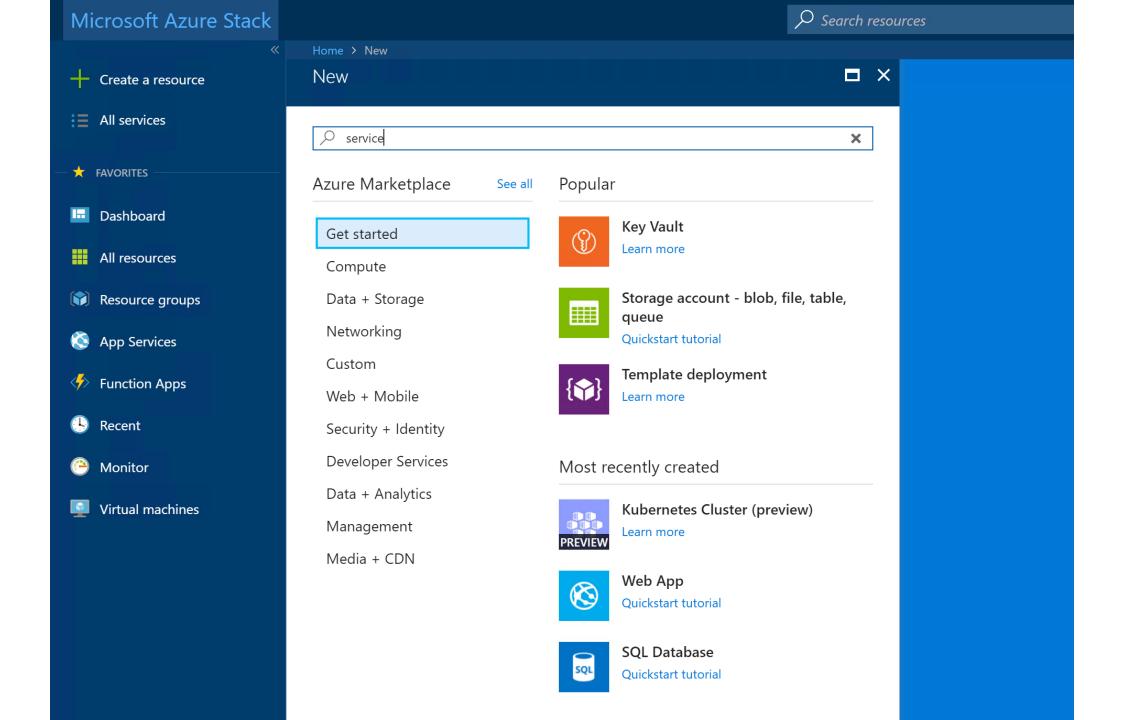
... on Azure Stack ...

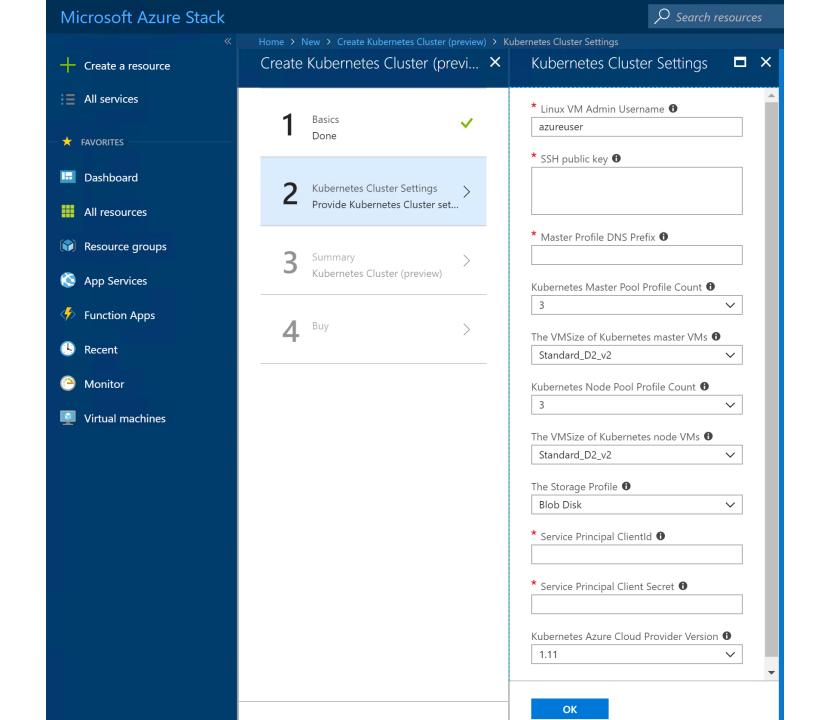
Is there a difference?

- Azure Stack AKS is (today) a set of ARM templates that deploy virtual machines
- Deploys Kubernetes in the VM scale set
- Provides the same API & UI
- Is not integrated in the Portal (so far)

AKS is ...

- In the basis for all modern PaaS Solutions on public Azure
- · Makes it quite simple ... Just deploy a container and be fine

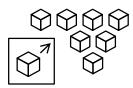

Containers in Azure Cognitive Services


Azure Cognitive Services containers provide the following set of Docker containers, each of which contains a subset of functionality from services in Azure Cognitive Services:

Service	Container	Description
Computer Vision	Recognize Text	Extracts printed text from images of various objects with different surfaces and backgrounds, such as receipts, posters, and business cards.
		Important: The Recognize Text container currently works only with English. Request access
Face	Face	Detects human faces in images, and identifies attributes, including face landmarks (such as noses and eyes), gender, age, and other machine-predicted facial features. In addition to detection, Face can check if two faces in the same image or different images are the same by using a confidence score, or compare faces against a database to see if a similar-looking or identical face already exists. It can also organize similar faces into groups, using shared visual traits. Request access
Text Analytics	Key Phrase Extraction (image)	Extracts key phrases to identify the main points. For example, for the input text "The food was delicious and there were wonderful staff", the API returns the main talking points: "food" and "wonderful staff".
Text Analytics	Language Detection (image)	For up to 120 languages, detects which language the input text is written in and report a single language code for every document submitted on the request. The language code is paired with a score indicating the strength of the score.
Text Analytics	Sentiment Analysis (image)	Analyzes raw text for clues about positive or negative sentiment. This API returns a sentiment score between 0 and 1 for each document, where 1 is the most positive. The analysis models are pre-trained using an extensive body of text and natural language technologies from Microsoft. For selected languages, the API can analyze and score any

raw text that you provide, directly returning results to the calling application.

https://docs.microsoft.com/en-us/azure/cognitiveservices/cognitive-services-container-support


Top scenarios for Kubernetes on Azure

Lift and shift to containers

Microservices

Machine learning

IoT

Cost saving

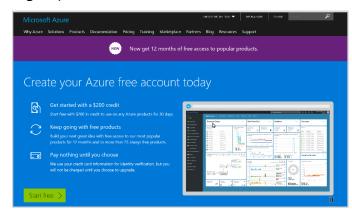
without refactoring your app

Agility

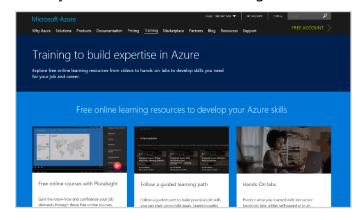
Faster application development

Performance

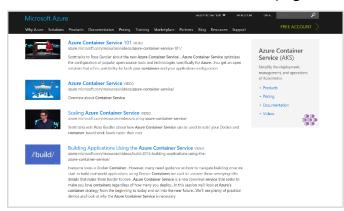
Low latency processing

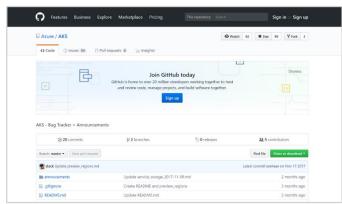

Portability

Build once, run anywhere


AKS resources

- Azure Kubernetes Service (AKS)
- Containers on Azure pitch deck
- Smart Hotel 360 Demo
- Documentation resources
- Ebook for distributed systems
- Distributed system HoL
- AKS HoL


Sign up for a free Azure account


Hone your skills with Azure training

Check out the Azure container videos page

Get the code from GitHub

Azure Service Fabric

Azure Service Fabric

Build, deploy, and operate applications, using any OS, at any scale, on any cloud

Build

Build new or transform existing applications

Deploy

Deploy any code at any scale using tools you know

Operate

Run and secure services reliably at any scale

... on Azure ...

Proven platform powering core Azure and Microsoft services

Microsoft has **deep expertise** in running global services such as Cortana, Skype & Cosmos DB

Service Fabric is the **foundational technology** powering these services & core Azure infrastructure

Sample scale of one of these services: **60 billion events per day** with millions of databases

About **30%** of Azure's cores run Service Fabric directly.

Service Fabric Manages **Millions of Service upgrades** weekly within Microsoft alone

Service Fabric Architecture

Your Scalable, Reliable, Managed Applications

Application Programming Models

Declarative application description, .NET, Java, and C++ APIs

Management Subsystem

Application and microservice lifecycle

Deployment, upgrade and monitoring

Communication Subsystem

Microservice discovery Reverse proxy

Reliability Subsystem

Orchestration, reliability, availability, replication

Hosting & Activation

Process & container activation

Federation Subsystem

Federates a set of nodes to form a consistent scalable cluster of machines

Transport Subsystem

Secure point-to-point communication

Testability Subsystem

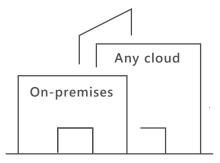
Fault injection, test in production

Service Fabric Programming Models

Guest Executables/Containers

- Bring any exe
- Any language
- Any programming model
- Packaged as Application
- Gets versioning, upgrade, monitoring, health, resource governance

Reliable Services


- Stateless & stateful services
- Independent lifecycles
- High density
- Access to Reliable Collections
- Transactions across collections
- Full platform integration

Reliable Actors

- Simplified programming model
- Single Threaded model
- Requires totally disconnected compute & state
- Removes access to some advanced features
- Be careful

Service Fabric Products

App, Cluster and Hardware Control

Customer manages hardware, OS patching, runtime upgrades, cluster capacity & application deployment

App & Cluster/Appn Crosh trol

Azure manages Wals, eOs patching, runtime upgrades untime upgrades, capacity planning, provides micro-billing

Customer manages application deployment and Colustornea parityges application deployment (serverless)

Resources

Try it now: in under 5 minutes!

Create a new .NET Service Fabric application in Azure

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-quickstart-dotnet

Deploy a Service Fabric Windows container application on Azure

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-quickstart-containers

Deploy a Linux container application on Azure

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-quickstart-containers-linux

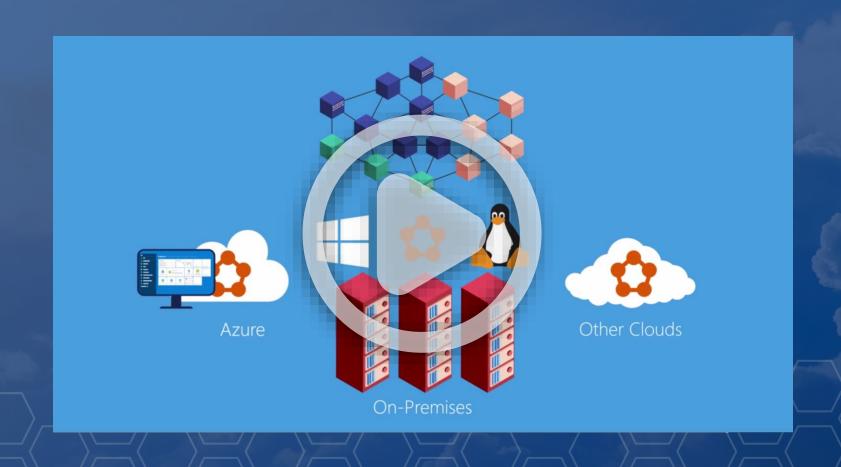
More resources

Service Fabric developer SDK

http://aka.ms/ServiceFabricSDK

Service Fabric course and lab

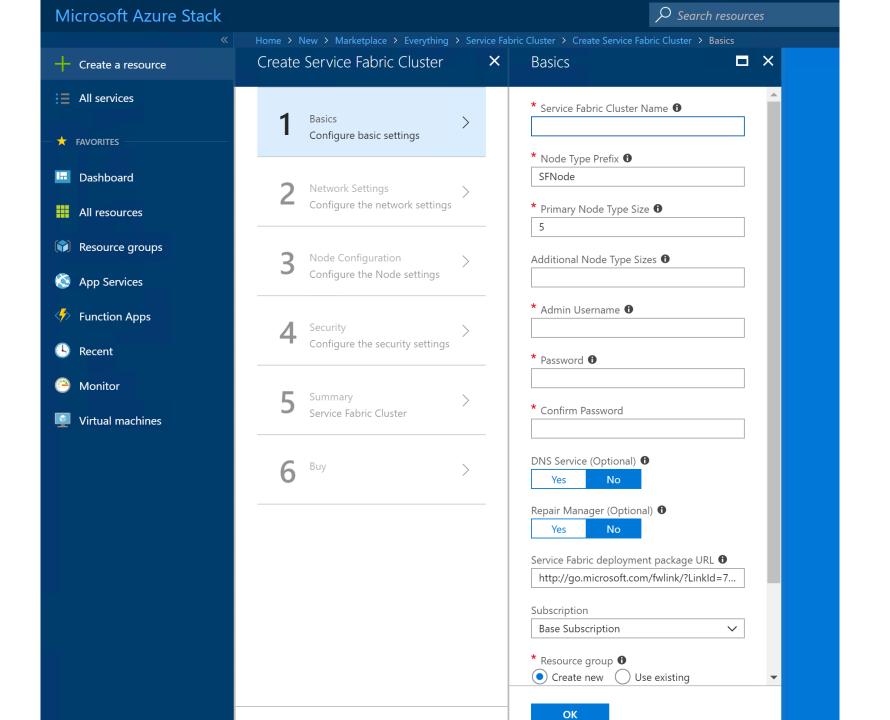
• https://mva.microsoft.com/en-US/training-courses/building-microservices-applications-on-azure-service-fabric-16747

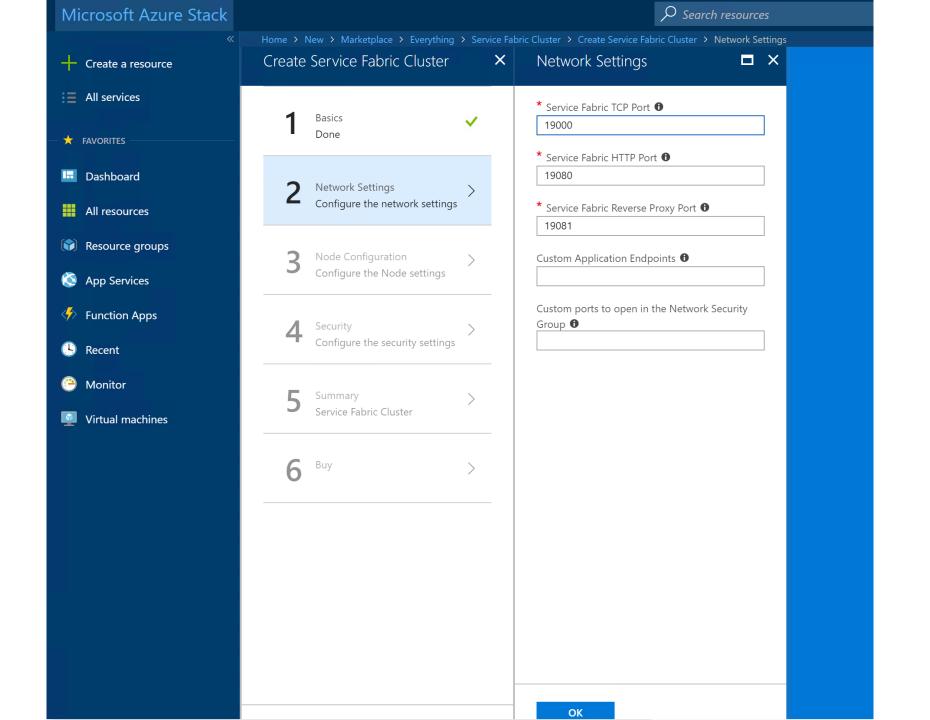

Learn from samples, free clusters, and labs

- http://aka.ms/ServiceFabricSamples
- http://aka.ms/tryservicefabric
- https://blogs.msdn.microsoft.com/azureservicefabric/2016/07/06/introduction-to-service-fabric-lab-part-1/

Questions? Comments? Issues?

- https://stackoverflow.com/questions/tagged/azure-service-fabric
- http://aka.ms/ServiceFabricForum
- https://github.com/azure/service-fabric-issues
- http://aka.ms/ServiceFabricSlack

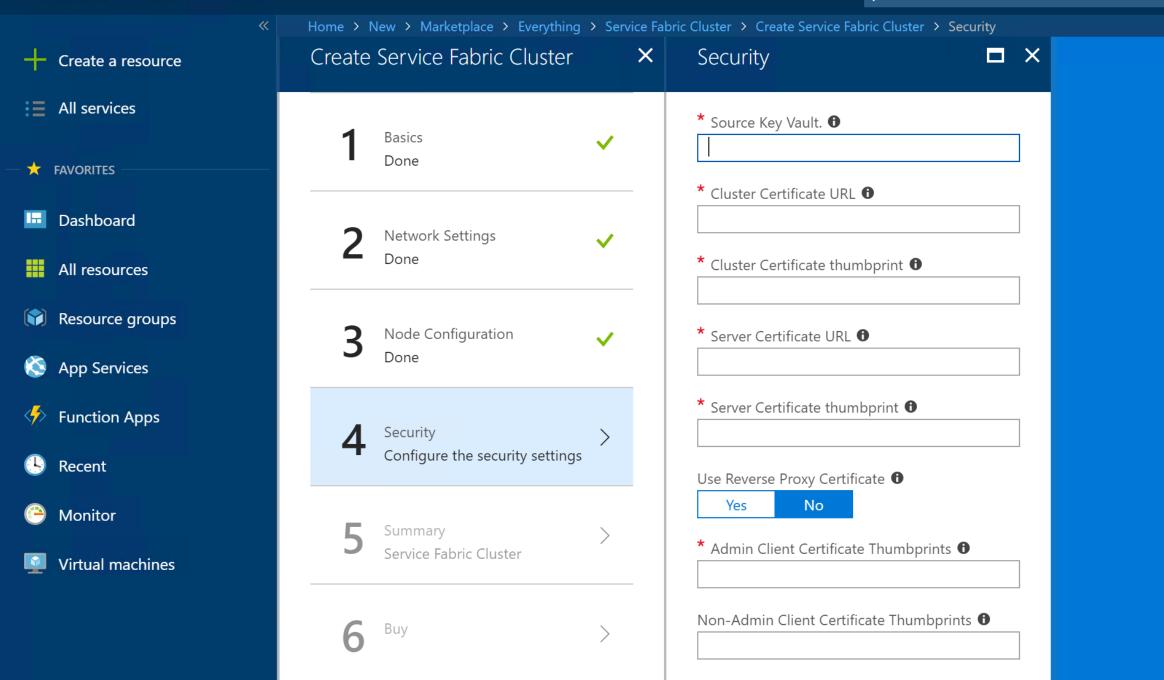

Service Fabric in under 4 minutes (video)



... on Azure Stack ...

Is there a difference?

- Service Fabric Cluster is (today) a set of ARM templates that deploy virtual machines
- Deploys Service Fabric in the VM scale set
- Provides the same API & UI
- Is not integrated in the Portal (so far)



Microsoft Azure Stack

Hybrid Scenarios

Requirements to be "really" hybrid

- Use the same technology basis on-prem and in the cloud
- Provide performant & reliable connectivity (Express Route)
- Deploy services near to the customer (into public Azure) where you need it
- Deploy services near to the vendor (into Azure Stack) where you require it
- Provide High Availability (how many Azure STacks???)
- Provide Business Continoutiy (ASR from Azure Stack to Azure???)
- Have a good monitoring (Azure Log Analytics with On-Prem Integration???)
- BE HAPPY :D

Demo time ...

(If the "demo god" is with us)

